Hierarchical Bayesian space-time interpolation versus spatio-temporal BME approach
نویسنده
چکیده
Abstract. The restrictions of the analysis of natural processes which are observed at any point in space or time to a purely spatial or purely temporal domain may cause loss of information and larger prediction errors. Moreover, the arbitrary combinations of purely spatial and purely temporal models may not yield valid models for the space-time domain. For such processes the variation can be characterized by sophisticated spatio-temporal modeling. In the present study the composite spatio-temporal Bayesian maximum entropy (BME) method and transformed hierarchical Bayesian space-time interpolation are used in order to predict precipitation in Pakistan during the monsoon period. Monthly average precipitation data whose time domain is the monsoon period for the years 1974–2000 and whose spatial domain are various regions in Pakistan are considered. The prediction of space-time precipitation is applicable in many sectors of industry and economy in Pakistan especially; the agricultural sector. Mean field maps and prediction error maps for both methods are estimated and compared. In this paper it is shown that the transformed hierarchical Bayesian model is providing more accuracy and lower prediction error compared to the spatio-temporal Bayesian maximum entropy method; additionally, the transformed hierarchical Bayesian model also provides predictive distributions.
منابع مشابه
Analysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملSpace-time interpolation of daily air temperatures
We propose a model to describe the mean function as well as the spatio-temporal covariance structure of 15 years of both maximum and minimum daily temperature data from 190 stations throughout the region of Catalonia (Spain), with daily data covering the period 1994-2008. Our aim is threefold: (a) estimation of the long-term trend of maximum and minimum temperatures; (b) assessing the spatial a...
متن کاملAssessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملAN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملBayesian Forecasting Using Spatio-temporal Models with Applications to Ozone Concentration Levels in the Eastern United States
Bayesian forecasting in time and interpolation in space is a challenging task due to the complex nature of spatio-temporal dependencies that need to be modeled for better understanding and description of the underlying processes. The problem exacerbates further when the geographical study region, such as the one in the Eastern United States considered in this chapter, is vast and the training d...
متن کامل